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Freezing and clustering transitions for penetrable spheres
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We consider a system of spherical particles interacting by means of a pair potential equal to a finite constant
for interparticle distances smaller than the sphere diameter and zero outside. The model may be a prototype for
the interaction between micelles in a solvg¢t Marquest and T. A. Witten, J. Phy&rance 50, 1267
(1989]. The phase diagram of these penetrable spheres is investigated using a combination of cell and density
functional theory for the solid phase together with simulations for the fluid phase. The system displays unusual
phase behavior due to the fact that, in the solid, the optimal configuration is achieved when certain fractions of
lattice sites are occupied by more than one particle, a property that we call “clustering.” We find that freezing
from the fluid is followed, by increasing density, by a cascade of second-order, clustering transitions in the
crystal.[S1063-651X98)05309-4

PACS numbgs): 61.20.Gy, 64.70.Dv, 61.20.Ja

[. INTRODUCTION an apparently simpler one. We take an interaction between
spheres that is simply equal to some positive constant if there
Much of our current understanding of the liquid-solid is any overlap between them and zero otherwise. The study
transition from a microscopic point of view is based on theof such a model is not of purely academic interest; a few
density-functional theory of inhomogeneous liquids-3].  years ago, Marquest and Witt¢i] suggested that interac-
This approach allows, in principle, the systematic calculatiorfion potentials qualitatively similar to a step function are
of the phase diagram of any system, once the pair potenti@xpected for micelles in a solvent. We study the phase dia-
between its constituent particles is given. A number of paildram of this model by using standard techniqiesegral
interactions of variable “hardness(hard spheres, inverse- €quation theories for the fluid and a cell model for the 9olid
power, Yukawa’ et¢_ha\/e been Studied, y|e|d|ng the phasealso combined with Computer simulations. We ﬁnd, on the
coexistence between a fluid phase, which is stable up tene hand, that the boundedness of the interaction makes the
moderate densities, and a crystal, which is stable at highetandard integral equation theories inadequate to accurately
densities. For most of the systems that have been considerégscribe the dense liquid phase of the system. On the other
in the |iterature' the assumed pair interaction between palhand, the fact that the interaction is constant bringS about a
ticles has the property that it grows as the distance betweenovel possibility for the crystal to lower its free energy,
the particles decreases, and diverges at zero separatigigmely, the formation of groups of two or more particles
These are the usuainboundednteractions. For such inter- (“clusters™) occupying the same lattice site, a property that
actions, a whole mechanism of liquid-state integral equatiofve call clustering As a result, there are second-order clus-
theories has been developed, which allows one to calculaf€fing transitions within the region of the phase diagram oc-
with a high degree of accuracy the structure and thermodycupied by the solid.
namics of the fluid phase, which is in turn a necessary ingre- The rest of the paper is organized as follows: In Sec. Il we
dient in any density-functional treatment of the freezing tran-Present our approach for the fluid phase and in Sec. Il for
sition. the solid phases. The results are combined in Sec. IV where
Much less is known about interactions that Amunded ~ We present the phase diagram of the model. Finally, in Sec.
i.e., they allow the particles to “sit on top of each other,” V We summarize and conclude.
imposing only a finite energy cost for a full overlap. This is
natural since a true, microscopic interaction always forbids || PENETRABLE SPHERE MODEL: THE FLUID PHASE
overlaps. However, the situation may be different if, e.g., one
considers the “potential of mean force” between two poly- We consider a model of penetrable spheres, whose inter-
meric coil centroids in a good solvent, as suggested mangctions are described by the pair potential:
years ago by Stillinger4]. The two centroids may coincide
without this resulting in a forbidden configuration. Stillinger e, Osr<o
thus introduced the “Gaussian core model,” consisting of PN=10 sy 23
particles that interact by means of a pair potentglr) ' '

_ a 2 . . . . .
= poexp(_r’lo?), wherer is the interparticle distancef, is whereo is the diameter of the spheres ands the height of

an energy scale, and is a length scale. This model and its : . . i
phase diagram have been examined in Réf&], following Ejhueceeg?égrrz/pgfa:ﬂjer’reifeoé.efﬂza% gzicklng fractiony and re

an approach based on general mathematical properties par-
ticular to the Gaussian potential and on computer simula-
tions, for a review see Ref6]. _T 3 _keT
X . . . n=—=po°, t=—m, (2.2
In this paper we also consider a bounded potential, albeit 6 €
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wherep is the number densityl is the temperature, arid 40 -
is Boltzmann’s constant. — Stmulation
35} —=—= PY-closure 4
Clearly, at zero temperature the model reduces to the harc —-— HNC-closure

sphere(HS) potential. The first task is to investigate the
structure and thermodynamics of the fluid state. In a theoret-
ical approach to the problem, typically one of the various 25
approximate liquid-state integral equation theories is em-__
ployed, which yields the radial distribution functiggr) of 5 20
the fluid together with the direct correlation functia(r)

related tog(r) by means of the Ornstein-Zernick®2) re- B 1

3.0

p——r—

lation [8]: ol '\\
|
g(r)—1=c(r)+pf c([r—r'Dlg(r’)—1]dr’. (2.3 o° \\ 1
O'Oo.o-—‘~ 1.0 2f0 3fo 4.0
Another exact relation connectirggr) with c(r) reads as e
g(r)=exp[—B¢(r)+g(r)—1—c(r)—B(r)}, (2.9 FIG. 1. Comparison of the radial distribution functigir) as

obtained from simulation, and the PY and HNC closures, for a

whereB(r) is the so-called bridge functiof®], the sum of syste_m of p(_enetrable spheres at reduced temperatu@e2 and
all elementary diagrams that are not nodal. SiB¢e) is not ~ Packing fraction,=0.3.
known, the various approximate liquid-state integral equa-
tion theories can be regarded as approximations of this quan- f(r)=1—exp(—{r). 2.9
tity. In this way, an additional equation or “closure” involv-
ing only g(r) andc(r) is supplemented to the OZ relation The paramete{ is determined in such a way that thermody-
and the system becomes solvable. namic consistency is achieved. The nomenclature “mixing

The simplest and most frequently employed theories aréunction” comes from the fact that the RY closure provides
the hypernetted chainfHNC) and Percus-Yevick(PY) a means of interpolation between the PY and HNC closures.
schemes, which, however, due to their approximate character In order to obtain a comparison and test the performance
lack thermodynamic consistency; the “pressure” and “com-of integral equations, we have also performed standard
pressibility” routes to the liquid free energy yield different Monte Carlo simulationfl1] in the constanNV T ensemble.
results. In the HNC, one simply seB{r) =0, obtaining the All runs were performed in a cubic box containing 500 par-
closure ticles and using periodic boundary conditions. We calculate

the radial distribution functiomg(r) as well as the structure
g(r)y=exp—B¢(r)+g(r)—1—c(r)}. (2.5  factorS(k) “on the flight.”
For t=0, where our model reduces to hard spheres, the

On the other hand, the Percus-Yevick closure can be seen @ solution is analytic and is known to describe the pair

a linearized version of the HNC scheme regarding the terndtructure of the HS fluid quite well. As a first step, therefore,

g(r)—1—c(r) in the exponential and reads as we have solved the PY closure for finite temperatures as
_Bo(r) well. In Fig. 1 we show results fay(r) and in Fig. 2 for the
g(r)=e [g(r)—c(r)], (260 structure factorS(k) for t=0.2 and packing fractiony

: . L _ =0.3 in comparison with simulation. In Fig. 3 we compare
corresponding to the following approximation for the bridge P g P

function: 18

Bey(r)=[g(r)—c(n]—1-In[g(r)—c(n]. (2.7 6 T bvee
There have been various attempts to improve the above '
approximations and to come up with a manageable theory 4, L
that would also overcome the problem of thermodynamic
inconsistency mentioned above. Among the most popular are_ o
the modified HNOMHNC) approach of Rosenfeld and Ash- =, [
croft [9] and the theory of Rogers and You(@gY) [10]. In

the latter, one replaces the exact relati@i) above by the 0.6
closure
04 |
exp{y(r)f(r)}—1 o2t
9(r)=exp~ Bh(N} 1+ ———5 . (28
0'00.0 5:0 1(;.0 15‘.0 2(;.0 25.0
kG

where y(r)=g(r)—c(r)—1 and f(r) is a “mixing func-
tion” depending on a single parametérand taken to have FIG. 2. Comparison between the simulation result and the PY
the form closure for the structure fact@(k) at the same point as in Fig. 1.
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50 y y - - - - - - - approximation oB(r) especially for lowmr where this func-
45 F — Simulation i tion is relatively large, cause no serious problems. Indeed,

—=—= PY-closure

referring to Eq.(2.4) we see that ifp(r)— asr—0, then
the interaction dominates in the exponential and sey{d®
—0 for short separations. But in our case wherg) re-
mains finite for allr, an accurate knowledge of the bridge
function isessentiain order to bring about a sensible theory
for this system.

The Rogers-Young closure provides a more sophisticated
approximation forB(r). We have attempted, therefore, to
solve this closure but again we ran into difficulties: no self-
consistent solution could be found fay=0.45 fort=0.1.
Moreover, the results for the lower values pfwere very

4.0 |

35

3.0 F

25

8(r)

20

) ] similar to the PY ones. Further attempts to modify and im-
0000 o5 0 15 20 25 30 35 40 45 50 prove the RY closure did not yield the desired agreement
Ty with the simulations. We do not expect that any other of the

FIG. 3. Comparison between the simulation result and the PYStandfr’lrd closures V\./i” be of much ulse either, for the reasons
closure for the functiorg(r) at »=0.5 andt=0.2. Note the dra- c_ies_crlbed above_: n t_he formulatlor_l _Of all _app_rt_mmate
matic increase of(r) from simulation inside the core. The simu- liquid-state theories it is assumeexplicitly or implicitly)
lation value forg(r) atr=0 is in fact equal to 18.5. that the strongly repulsive interaction simply forbids close

approaches between particles, so that there exists &gene
the g(r)’s for the same temperature ang=0.5. As can be €rally temperature and density dependietistancer, such
seen, for the lower densitg'(r) is reproduced quite well by that forr<r0 the radial distribution functiorg(r) vanishes.
the PY closure outside the core. However, inside the core thelere, the situation is quite the opposite: the interaction is
simulation shows a tendency ofr) to grow towards the such that ifavorsclose approachesn fact, full overlapg at
origin, which isnot reproduced by the PY result. The growth high density. Thus, we have decided to resort entirely to
of g(r) towards the Origin can be S|mp|y understood as f0|_C0mpUter simulations in order to calculate the structure and
lows: Since the interaction is such that it does not imposéhermodynamics of the fluid phase at high densities.
any additional penalty for full sphere overlafia compari- There are two ways or “routes” to evaluate the excess
son with partia| Ones as the density grows there is an in- free energy of a fluid from a simulation. The denSity route or
creasing tendency of the particles to form clusters in which' 7 route” consists of performing a series of simulations at
more and more Spheres “sit on top of each other.” In thisﬁxed temperature but for increasingly hlgh densities. Once
way, more space is left free for the remaining clusters andhe radial distribution functio(r;») has been calculated,
the optimal configuration is achieved. The discrepancies behe form of the interaction at hand implies that the excess
tween the PY and the true results are not dramaticfor Pressure is related to the “jump” ai(r) by the equation:
=<0.3 and this limit grows with decreasing temperature.
Moreover, the discrepancies in the structure factor are much %_4 N _. 21
less pronounced than those for the distribution function. p 7g(o™im=gloim], (210
However, the differences become really spectacular as the
packing fraction grows. The PY closure is inadequate to rewhere g(o™;7) is the value ofg(r) immediately out-
produce the accumulation of spheres on top of each otheaside/inside the core. Then, the excess free energy per particle
and brings about a radial distribution function that is quiteis obtained by
wrong at high densities.

The failure of the PY closure to describe the very dense BFe(m) 18P dn’
liquid at finite temperatures is not a surprise; after all, it is N JO P 7 (2.11
known that PY works best for hard, short-range interactions
like hard spheres. Thus, we resorted to the HNC as a possible
solution. In Fig. 1 we show the comparison of the HY(C)
with simulation for the data poirit=0.2, =0.3. As can be
seen, now the penetration towards the originoigeresti-
mated In fact, this feature becomes more and more pro
nounced ag; grows and, as a result, the HNC fails to con-

Another way to calculate the excess free energy is by the
so-called temperature route ot Youte.” Here, one makes
use of the thermodynamic identity relating the excess energy
per particle U /N=u(B) and the reduced excess free en-
‘ergy per particle BF.,/N=Bf.(8) atfixeddensity:

verge any more fomp=0.6 att=0.1. We can qualitatively A Bf i B)]
understand the overestimationgfr) inside the core by the Ue(B)= ° , (2.12
HNC as follows: it is well known that the bridge function is B

a positive-definite quantity9] (although this has not been i

strictly proven, it turns out to be true in almost all cgsasd (O express the latter as an integral frofm=o (where Ue,
thus it plays the role of an “effective repulsive interaction.” Vanishesto the considered value of the temperature:
Then the HNC, by settin8(r) =0 everywhere, gives rise to

a g(r), which is too high. For the case of an unbounded Bfex(ﬁ)=fﬁuex(ﬂ')d,3'- 213
interaction that diverges at the origin, inaccuracies in the 0
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Thereby, a series of simulations is performed at fixedut
at successively decreasing temperatures. For each temper
ture, the value of the internal energy is measured and at the
end the integral of Eq(2.13 is performed. Notice that for
the interaction at hand, the evaluation of the internal energy
in a simulation is particularly simple; denoting By, the
average number of particles lying within distanedrom a
given patrticle during the simulation, one simply has
Ued B)=378N,(B). (2.14

If one envisions a two-dimensiongtt plane, then they
route corresponds to a horizontal path and tthieute to a
vertical path along this plane. If neither of the two paths
crosses any phase boundaries along its way from its starting
point to its end, then the values obtained for the excess free
energy using either route should igkentical If, on the other
hand, ondor more phase boundaries are encountered along
the way, then differences will occur. We have, therefore,
performed simulations for various different temperatures and
density ranges to check this agreement and to use the resul
as a first diagnostic tool for possible phase transformations
on the system. Results for temperature.1, 0.2, and 1.0
are shown in Figs. @), 4(b), and 4c), respectively. As can
be seen, the two routes yield identical resuitsthin “ex-
perimental” errorg for the highest temperature, up tp
=1.8. However, for the two lowest temperatures, discrepan-
cies start to appear, far=0.1 at abouty=0.5 and fort
=0.2 at abouty=0.7. As this is a clear indication of a phase
transition located in the neighborhood of thesgalues, nei-
ther then nor thet route results can be considered as reliable
estimates of the free energy of the system for values of
exceeding the above. However, they can be used in conjunc
tion with our theoretical results for the free energy of the
crystal phase in order to draw some general conclusions re-
garding thetopologyof the phase diagram, on the one hand,
and to trace it out in more detail on the other. These consid-
erations are presented in Sec. IV.

IIl. THE SOLID PHASES
A. General considerations

In the solid phase the one-particle dengity) is position
dependent, a property that characterizes the crystal as an ir
homogeneous phase. In the last twenty years, a common the
oretical tool that provides for a satisfactory treatment of the
freezing transition has been density-functional the@¥T).
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In DFT, the crystal is viewed as a spatially inhomogeneous FIG. 4. Free energy densities as obtained byshendt routes
fluid and the properties of the homogeneous phase are usefithe simulation(a) t=0.1; (b) t=0.2; (c) t=1.0. The solid lines

to evaluate the free energy of a candidate crystalline strudn (8 and(b) denote the results obtained by using the compressibil-
ture, for a review se¢2,3]. Among the most popular ver- ity route of the PY solution and demonstrate that for low densities

sions of DFT is the modified weighted density approxima-the PY closure gives reasonable results for this quantity.

tion (MWDA) of Denton and Ashcroft12], which has been

proven to be quite reliable for the case of the hard-spheréhere is just one particle per lattice site. This is manifested in
the usual parametrization for the one-particle density men-

freezing transition.

In common applications of the MWDA, the one-particle tioned above, which reads as

density of the candidate crystal structure is modeled as a sum
of normalized Gaussians centered around lattice sites, and

the width (localization of the Gaussians is used as a varia-
tional parameter until a minimum of the free energy is found.

312

P(F)I(;

{R}

> exg—a(r—R)?],

(3.9

Typically, one makes in the MWDA the assumption thatwhere{R} denotes the set of Bravais lattice vectors anis
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the localization parameter. We call the version of theings, the PY solution is reliable, as can be seen from Fig. 2
MWDA where the above assumption is made the constrainetbr the structure factor and from Figs(a} and 4b), where
MWDA. we show the free energy curves obtained from the compress-
In principle, one would like to have at hand the possibility ibility route of the PY solution, demonstrating that they run
of treating the average site occupancy asadditional pa-  very close to the simulation results for low packings. We
rameter in the theory. Then, the restricted parametrizatiofound that for all temperatures, the solid free energies were
(3.1 above must be replaced by the more general expressiandistinguishable from the HSt€0) result, demonstrating
that the structure of the solids below close packing, even at
3/2 finite temperatures, is identical to the HS solid, i.e., the par-
P(f)ZX(;) > exf—a(r—R)?], (3.2 ticles avoid any overlap. We will make use of this prelimi-
Ry nary result shortly. However, for the study of crystals with
acking fraction exceedingycp, the MWDA is unsuitable
or the reasons explained above, and we have to resort to a
different approach.

wherex stands for the average site occupancy and is to b
treated as a variational quantity. For a HS crystaid in
general for all diverging potentials that do not allow multiple
occupancy, it is natural to expect<1. For the interaction at
hand, this general parametrization is quite essential, if DFT
is to be used, for the following reason: As the density of the et us consider, to begin with, a HS solid Nfparticles
crystal is increased beyond the close-packing limit of theHS diameters, massm) enclosed in volume), having
considered structure, it is expected that it will be faVOI’ab|epacking fractions, and site occupancy equal to unity. The
for the system to form fractions of pairs, triplets, etc. Indeedpartition functionQy(#) is given by
whereas for a crystal with single occupancy the energy cost
per site above the close packing limit is equal to one-half of
the number of nearest neighbors, formation of a number of n(7)=
pairs brings about a much lower cost, simply equal to the
number of paired sites. At the same time, by pairing the
lattice constant “opens up” and overlaps between nearest
neighbors are avoided. The tendency for the formation of
composite particles, or “clusters” is also manifested already =0nZn(7), (3.3
in the fluid, through the dramatic increase of the liquid state ) , ) o
g(r) towards the origin mentioned in the previous section. Whereh is Planck’s constan®)y is the kinetic, andZy the

The difficulty we are faced with, however, is that a free co_nﬂguranonal part of the partition function. For the gvalu—
minimization of the MWDA functional doesiot yield a  ation of the latter, we adopt the cell mod@4—17, which
physically acceptable value farfor the case of hard spheres. exploits the picture of particle ina sollq as being confmgd in
Indeed, it has been four{d3] that the minimum of the un- cells of cages formed by the_ne|ghbor|ng ones from which it
constrained MWDA occurs for a site occupancy 1.31, an cannot escape. We emphasize here that we employ the cell

obvious physical impossibility for hard spheres. It follows Mod€el only as an intermediate step in order to establish a
then that the results of a free minimization of the MWDA relation between the free energy of a clustered crystal and

functional cannot be trusted, at any temperature. If, one thi1at of @ HS crystal and not as a computational tool in order
other hand, the general parametrization given by B®) to actually cal_culate these quantities. The p_acklng fraction
above is maintained, but the domain of acceptable solutioANd the candidate crystal structure determine the .volur_ne of
for x is restricted by hand to@x<1, then the valug=1 is the ceII', also called free volum( 7). .Then, the.part|clz'as.|n
obtained as the minimum. Hence, thenstrainedMWDA the solid can be treated as distinguishable. Since within the

gives quite reliable results for the entropic free energy of é:_ell the B_oltz_mar)n factor is unity, the configurational parti-
HS crystal. tion function is given by

Clearly, the possibility of clustering appears as a mecha-

nism for the lowering of the free energy of the crystal mainly ()=
for packing fractions exceeding the close packing ligpip;

at low temperature&vith which we are concerned heyeve
can still use the constrained MWDA foj< ncp and obtain
information about the structure of solids with single occu-
pancy. We carried out the MWDA calculation for tempera-
tures 0.6<t=<0.3, using the PY results as input for the fluid
structure and free energy. The advantage of the MWDA i
that the solid is mapped onto an effective liquid having a BFus(7)

“weighted packing fraction”7 that is much lower tham of Tzfo( 7)=—In
the solid[12], typically 7~0.30. The necessary ingredients

for theA: MWDA are the values of the structure factor where A =(27mkgT/h?)¥2 is the thermal de Broglie wave-
S(|K[; 7) of the liquid at the nonzero reciprocal lattice vec- |ength.

torsK of the crystal and the free energy per particle of the | et us now proceed in an analogous way for the general
fluid again at packing fractiomy [12]. For such low pack- caset#0. As mentioned above, we expect the formation of

B. A cell model for the clustered solids

4’77 _an2 N
FJ p2e Bp /(zm)dp)

N
f()dr) =uvi(7). (3.9

Strictly speaking, the expression above provides only a lower
bound to the true partition function of the crystaB,19.

Combining Eqgs(3.3) and(3.4) above, we obtain the free
energy per particle of a HS crystal having packing fractipn
Sand site occupancy one, as

vi(7)
A3

: (3.5




3140 C. N. LIKOS, M. WATZLAWEK, AND H. LOWEN PRE 58

doublets, triplets, etc. in the crystal. Clearly, as the density is INQn(7,t)

increased, more and more complicated composites will ap- — - N

pear (quadruplets, quintuplets, etclo keep the discussion

simple (and the theory computationally manageable re- 3

strict ourselves here to clusters up to triplets only. + né. 3.9
Let us then consideN particles in a crystal withNg sites.

Of theseN; sites,N, are occupied by a single particld, by  The first term is, according to E3.5), nothing butf (),

N,+3N;
N

A3

Uf(?’)}Jr

N
)t‘1+W2In2

pairs, and\3 by triplets. We set the free energy of a HS crystal having packing fractign
The above expression is not yet the free energy of the clus-
Ny N, Ns tered crystal, as it does not include the “mixing-entropy”
N_SES' N_SEZ’ and N_SEW- (36 contributions arising from all the possible ways of choosing

the N, andNj; sites that are occupied by clusters. This mix-

Clearly, s+z+w=1 andN=(1+z+2w)N,. The result of NG entropy is simply:
the formation of composites is that the “clustered solid” has o
a lattice constant that corresponds notzidout to a new, Smic = KelnW, (3.10

by Nj sites out ofNg for the multiple occupancies. It is straight-
forward to show that

3.7) N!
W= N,!Ng! (Ng—N,—N3)!

7

Yo 1tztow’

(3.11

The idea is that the system will find it favorable to create i L i
as many clusters as possible so as to bring about an effective Finally, thez- andw-dependenvariational expression for
packing y that is belowncp. This way, the energy cost the free energy per particle of a solid with clusters is given
comes entirely from the sphere overlaps in the clusters thenfY
selves; otherwise, the lattice cell is now large enough, so that

the expensive, multiple overlaps with the neighbors are ~ BF(7.5,Z,w) —F(mt:zw)= — INQN(7,8) — Swix
avoided. This assumption is corroborated by the MWDA re- N T N kgN"
sults for the single-occupied solids beloyp. Indeed, it (3.12

was found that, for low temperatures amek ncp, the sys- .
tem behaves essentially a HS crystal. Hence, our model fdrollecting the results from Eqs(3.6-(3.9) and (3.1
the clustered solid is the following: enough clusters arg?P0ve, we finally obtain

formed so that the effective packing fractignis always 743w
below ncp and, once this has been achieved, each object?(y,,t;z,w):fo( i +( -1
occupying a lattice sitébeing a single particle or a compos- 1+z+2w) |1+z+2w
ite) acts as a hard sphere with respect to any other object ZIn2+winé 1
occupying a neighboring site. +
With these assumptions in mind, we now proceed with a 1+z+2w | 1+z+2w
cell model for the clustered solid. The free volumeis now X[zInz+winw+ (1—z—w)In(1—z—w)].
dictated by the packing fractiom. Each site occupied by a
pair brings about an energy castand each site occupied by (3.13

a triplet a cost 3. Taking into account the indistinguishabil- The quantitiesz andw are variational parameters, as there

ity of the particles in the clustered sites, we can now write re no chemical potentials controlling the site occupancy,

down an expression the partition function of our clusterecﬁence the free ener er particle of the solid is aiven b
crystal, which, at this stage, doast include the entropy of gy perp 9 y

mixing.: f(7,t)=minf (7,t;Z,W). (3.14
Ny {zw)
Qn(7,1)=0y J’ dr} In our considerations we have examined both the fcc and
vl bce solids, finding that the fcc is favorable always. So we
e Be N restrict the discussion to this structure only. For the fcc,
X TJ de ds} ncp=0.74. For the free energy per particle of the HS solid,
C e el fo, at packing fractiony= 7/(1+z+2w)< 5cp We use the
e 3B N3 results from the constrained MWDA. An important result
X3 j drf dSJ dt} : from the MWDA is that the fcc HS solid isnechanically
s Jue(y) vi(y) ve(y)

unstablebelow »=0.46, i.e., the MWDA free energy cannot
(3.9 be minimized by a nonzero value afif the packing fraction

is below the value mentioned above. We have, thus, imposed
Using the relatiorlN=N;+2N,+ 3N;, performing the vol- an artificially high(practically infinitg value for the function
ume integrals above, and taking the logarithm, we obtain fy(#) for »<0.46 and proceeded with the numerical mini-
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mization. The latter must be performed in the triangular do- T . . . . .
main which is enclosed in thew plane by the boundaries: __ O Simulaion
0<z=<1; Osws=1; andz+ws=1. 81r o

C. Comparison with simulations

In order to check the reliability of the fraction of doubly
occupied lattice sites as obtained from the above described
theoretical model, we performed a numerical calculation ot&
the free energyF of the fcc solid at fixed temperature 77
=0.1 and fixed particle volume fraction=0.8, where the
theory predictsw=0, i.e., there are only singlets and dou-
blets in the crystal. For that purpose, we took advantage of
thermodynamic integration method initially introduced by
Frenkel and Ladd20,21. In this Monte Carlo method, the 74

0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75

78 |

(z)IN

76

75

free energyF of the investigated system is calculated by z
transforming the system reversibly into a harmonic Einstein o _ _
crystal of the same crystal symmetry, whose free enefgy FIG. 5. The variational free energy of an fcc solid having pack-

is known analytically. The crystal symmetry of the referencelnd fraction»=0.8 at temperature=0.1 as a function of the frac-
crystal is simply characterized by the zero temperature latticBon of sites occupied by pairs.

sites of theN simulated particle$R}o =(Ro1, - - - \Ron)- A

throughout extensive description of the method can be fountheory described above provides a reliable method for the

in Ref.[22]. calculation of the free energy of the crystals.
In our specific use of this method, we choose the lattice
sites Ry of the reference harmonic crystal to be partially D. Results of the variational calculation

dEUbly OCCLtl.p:ed' "e't; we Sd@ow Ré),j fortsollme trsndomly We now present in detail the results obtained from the
chosen particle numbersand). We do not aflow tnree par- theory in the range of thermodynamic parameterstO
ticles to have the same reference crystal position. So, the

; ) ! 0.3 andn=<2.2. First, we introduce a terminology to char-
reference crystal structure is characterlzed by_ its crystal SYM: cterize the various types of fcc solids with respect to the
metry (chosen to be fcc in our casets particle volume

: . . . . . fracti f sit ied by clusters, as folloWs:S solid

fraction 7, and its fraction of doubly occupied lattice sites ifrasczlcinségv\?l:eos : (zﬁ;:lg);,esol%?fu&esri 1asot<)zo<wl$ aﬁg\:v
For fixed » andz, the free energ¥ could then be calculated _ . (ii,i) ) soIid’ ifs=0 z=1 andw=07' (iv) PT,soIid if
as described in detail in Ref21,22. We performed calcu- s=6 0<z<1 and 0<V\'I<1' ’(v) SPT so’lid if 0cs<1 0
lations for various pairing fractions ranging from 0.35t0  _,_1 and ocw<1- and(vi,) T solid if S=z=0 w=1.
0.80, fixing the temperature &t=0.1 and the density ap These are the six types of solids that come out of the
=0.8. In all simulations, the number of particles was be-minimization. In Fig. 6 we show the dependencespf, and
tween 500 and 700, therefore finite size effects could bg, 5 the fec packing fractiony for t=0.05. The typical
neglected. _ _ scenario that materializes, at least for temperattse®.1 is

Since our Monte Carlo simulations were always per-e following: for packing fractionsy=< 7cp, we have the
formed for one specific realization of the singlet-and-double{ g o/ 5 solid, as there is no particular gain for clusters to be

fec solid, we had to add the mixing entroBy,, [as given by f5:meq. At higher densities, pairs start to appear and an SP
Egs. (3.10 and (3.11)] to our Monte Carlo free energy re-

sults. In principle, in the Monte Carlo simulations, the sys-
tem was free to explore the configuration space associatec
with the various possible realizations of the fcc solid, since
we did not restrict the particle coordinates to distinct regions
in the simulation box. However, this would have required 5|
very long simulation runs since very large mean-square dis-
placements of the particles would have been needed. Since i
our simulations the mean-square displacements of the parx %8|
ticles were in the order of the lattice spacings, we had to take:;
into account the mixing entrop$miy - 04|
In Fig. 5 we show our Monte Carlo results for the free
energy of the fcc solid with singly and doubly occupied sites
including the mixing entropyS,,x, as a function ofz for 02r
fixed t and 5. Also shown is the corresponding results of our
above described theoretical modle¢., from Eq.(3.13 with 0 . . . \ \ \ \
w=0]. Obviously, the agreement of the pairing fractions 04 08 08 10 12 14 16 18 20 22
Zmin» Where the free energy of the fcc solid achieves a mini-
mum is very good. We have also done the same check at FIG. 6. The fraction of sites with single, double and triple oc-
different » values, obtaining similar agreement; thus, thecupancy as a function of for fcc solids at temperature=0.05.
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600 - y - - ' - ' fluid free energy at high packings and this, in turn, ought to
56.0 9 Puidn-route . 1 lie below the solid free energy, consistently with the
s0.0 | Solid: theory 1 reentrant-melting scenario. Obviously, this is not the case.

This leads us to the conclusion that there is no reentrant
melting, at least not in the range of densities considered here.
Instead, there is freezing into a fcc solid, followed by a cas-
cade of clustering transitions as described in the previous
section.

The coexistence densities for the freezing transition are
determined by performing a common-tangent construction
on the fluid- and solid-free energy curves. As mentioned pre-
viously, none of they- or t-route curves can be considered as
the “true” free energy of the fluid beyond the point where
they start to diverge from each other. However, #ieoute
curve is in a way “more wrong” than theroute curve in the
sense that it yields, at high densities, fluid free energies that

FIG. 7. Free energy densities for the fluid, as obtained by usingire lower than their solid counterparts and this leads to the
the 5 andt routes in the simulation and for the solid as a result of contradiction explained above. Thus, the correct free energy
the theory. The reduced temperature:#s0.1. of the fluid must follow a curve that is identical to the simu-

id is f d. Th i fract ith densi h lation results up to the point where the two routes ageaee
solid Is formed. The pair fraction grows with density at the , here the Jiquid is stabjeand then it must cross the solid

expense of the sin_gly occupied sites. Depending on the_ eMee energy and run above (and thus the liquid is meta-
perature, the fraction of pairs may reach the value unity akiable therk In this sense, the fluid free energy is “closer”

abouty~2ncp before any triplets appear, thus forming a P, 14t obtained by theroute than the one obtained from the

crystal; this happens for<0.05. For higher temperatures, . ., te Therefore, we have performed the common-tangent
triplets appear while botls and z are nonzero, thus giving congtryction using the route result for the fluid. As the
rise to a SPT solid. By further increase of the density, thq

) : ) wer end of the common tangent ends up lying in the region
single-occupancy sites disappear altogether and a PT SOIiﬁhere thet-route results are indeed reliable, the precise

emerges. Then, the pairs start being replaced by triplets comy,;5e of the liquid free enerayv curve for densities/ond
pletely amd a T solid takes the place of the PT solid. freer)ing is imm?;uerial. 9y

_As shown in Fig. 6, the fractions of multiply occupied = gyom the more quantitative point of view, the fact that the
sites approach zero in a continuous way. Thus, we are having,e,istence region liesreciselyin the domain where the
a sequence obecond-order clustering transitions the ¢ routes yield results that begin to diverge is an indepen-

solid_, which gets more and more complicated as ”_“? packi_ngem confirmation for the theoretical approach we employed
fraction grows. Whether all this sequence of transitions WI||f0r the solid. Indeed, this discrepancy is the signature of a

actually appear in the phase diagram depends also on t ase transition that now comes about to be located in the

compef[ition \.Nith the "qUid. free energy. The 'fuII phasg dia- right place by means of a completely independent theoretical
gram, |nclud|r]g the freezing transition, is discussed in theapproach for the crystal. The same agreement was found at
following section. all temperatures we considered.

Putting everything together now, we trace out the liquid-

IV. THE PHASE DIAGRAM solid coexistence curves as well as the boundaries of the

In this section we determine the low-temperature phas(g,econd-order transitions between the crystals with the differ-
diagram of the system, putting together the results obtainefNt tyPes of clustering. The phase diagram obtained in this
for the free energy of the solid, obtained by the procedurdV@y iS shown in Fig. 8. The region of stability of the T phase
described previously, and those for the fluid free energ)}s.aruflqally enlarged. The reason is that, in order to deter-
coming from the simulations. A representative case tfor MiN€ With accuracy the stability for a given type of clusters,
=0.1is shown in Fig. 7. The first question to be addressed it least the next type of cluster must be put into the theory,

the topology of the phase diagram, in particular the possibill'e" qIL_Jadrug)lets fo:jthe T SO"S’ efc. As ghis is ?]r.] inhcreasingly
ity of the existence ofeentrant meltingi.e., a remelting of CcoMPplicated procedure, we have not done this here. How-

the solid at higher densities. This is a realistic possibility thatVe" ir] vie_vv of the resu_lts already obtained, we e.xpect t'hat
he solid will proceed with more and more clustering at in-

in fact materializes for the bounded Gaussian potential of X . L L .

Stillinger [4-6). creasing density, thus giving rise to a quite interesting phase
Referring to Fig. 7, we see that if the-route result for diagram.

the is taken as the “true” liquid free energy, then we would

have indeed reentrant melting; in fact, for this temperature

the solid would be marginally stable at~1.0, i.e.,t=0.1

would be very close to a “maximum freezing temperature” We have considered a toy model of penetrable spheres

above which no thermodynamically stable solids would ex-characterized by an interaction that imposes a constant en-

ist. However, were this to be the case, thentthaute to the ergy cost if there is any overlap between the sphénes

fluid free energy would have crossed no phase boundarigmatter how strongand zero otherwise. Although the model

along its way. Thus, thé route would have given the true is quite simple, the form of the interaction, which favors full

45.0
40.0 |
35.0 |

30.0

BFG’/V

25.0 b
20.0 |
15.0 F

10.0 |
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[because theB(r) grows as well and/or as the temperature
is raised[because then the bare interactiB@(r) dimin-
isheq.

To the best of our knowledge, the only other bounded
interaction for which an attempt has been made to trace out
the phase diagram is the Gaussian model of Stillifge].
In that case, it was found that the model displayed reentrant
melting. In Ref[4], some general criteria for the mathemati-
cal form of the interaction were laid down and it was stated
that for any pair potential meeting those criteria, reentrant
melting behavior had to be expected. These conditions are as
follows: (i) the interaction must be bounded at the origin,
it must vanish strongly enough at infinity to be integrable,

and (iii) it must be differentiable at least four times. Our
interaction satisfies these requirements, with the exception of
(iii ) since it has a singularity at=o¢ and it is not differen-
tiable there. However, this does not constitute a serious vio-
FIG. 8. The phase diagram of the penetrable sphere model. THation as one could easily imagine an analytic potential that
thick lines denote the first-order freezing transition and the shadewould run arbitrarily close to our “step function” and for
region is the liquid-solid coexistence region. The dashed lines dethat potential the results would be practically identical to the
note second-order clustering transitions in the solid. As explained imnes found here. However, another important ingredient that
the text, the region of stability of the T solid is artificially enlarged goes into reaching these general conclusions is the assump-
due to the lack of the possibility of formation of four-particle clus- tjon that the solid(or solids of different crystal symmetry
ters in our theory.

that is “nested” between the fluid at low and high densities
have single site occupancy. We have not found reentrant
melting in our case, at least for the range of densities and
temperatures we considered. Although we cannot exclude
overlaps between the particles, brings about quite a few inthis possibility at some other region of the phase diagram, we
teresting features. As a first remark, we have found an inadeelieve that the arguments of R¢#] do not apply to our
equacy of the traditional liquid-state integral equation theo£ase, precisely due to the clustering in the solid, which takes
ries to describe in a satisfactory way the high-density fluidPlace in our model. For the same reasons, our results are at
phase of the system. We believe that this shortcoming can fedds with those of Marquest and Witté#i] who found re-
traced back to the inaccuracies in the estimation of the bridg@ions of stability of the bcc and simple-cubic structures at
function, inherent in all approximate closures. Such inaccugrowing density, based on calculations of the ground-state
racies are not dramatic if we are dealing with a unbounde@nergy, making the assumption of single occupancy in the

interaction. In those cases, the different closures give resul@ystal. We find instead that a cascade of second-order tran-
that differ on the amount of structure of, say, the radial dis-Sitions takes place in the crystal.
tribution functiong(r) outside some effective core where
g(r) vanishes. However, since the bridge functi®fr) at-
tains its highest valuegreciselyfor r —0, if the bare inter-
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